Cell motility driving mediolateral intercalation in explants of Xenopus laevis.

نویسندگان

  • J Shih
  • R Keller
چکیده

In Xenopus, convergence and extension are produced by active intercalation of the deep mesodermal cells between one another along the mediolateral axis (mediolateral cell intercalation), to form a narrower, longer array. The cell motility driving this intercalation is poorly understood. A companion paper shows that the endodermal epithelium organizes the outermost mesodermal cells immediately beneath it to undergo convergence and extension, and other evidence suggests that these deep cells are the most active participants in mediolateral intercalation (Shih, J. and Keller, R. (1992) Development 116, 887-899). In this paper, we shave off the deeper layers of mesodermal cells, which allows us to observe the protrusive activity of the mesodermal cells next to the organizing epithelium with high resolution video microscopy. These mesodermal cells divide in the early gastrula and show rapid, randomly directed protrusive activity. At the early midgastrula stage, they begin to express a characteristic sequence of behaviors, called mediolateral intercalation behavior (MIB): (1) large, stable, filiform and lamelliform protrusions form in the lateral and medial directions, thus making the cells bipolar; (2) these protrusions are applied directly to adjacent cell surfaces and exert traction on them, without contact inhibition; (3) as a result, the cells elongate and align parallel to the mediolateral axis and perpendicular to the axis of extension; (4) the elongate, aligned cells intercalate between one another along the mediolateral axis, thus producing a longer, narrower array. Explants of essentially a single layer of deep mesodermal cells, made at stage 10.5, converge and extend by mediolateral intercalation. Thus by stage 10.5 (early midgastrula), expression of MIB among deep mesodermal cells is physiologically and mechanically independent of the organizing influence of the endodermal epithelium, described previously (Shih, J. and Keller, R. (1992) Development 116 887-899), and is the fundamental cell motility underlying mediolateral intercalation and convergence and extension of the body axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.

Convergent extension, the simultaneous narrowing and lengthening of a tissue, plays a major role in shaping and patterning the neural ectoderm in vertebrate embryos. In this paper, we characterize the cellular mechanism underlying convergent extension of the neural ectoderm in the Xenopus laevis late gastrula and neurula embryo. Neural ectoderm in X. laevis consists of two components, a superfi...

متن کامل

Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis.

In a companion paper (Shih, J. and Keller, R. (1992) Development 116, 901-914), we described a sequence of cell behaviors, called mediolateral intercalation behavior (MIB), that produces mediolateral cell intercalation, the process that drives convergence and extension of the axial and paraxial mesoderm of Xenopus. In this paper, we describe the pattern of expression of MIB in the mesoderm duri...

متن کامل

Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants.

We have analyzed cell behavior in the organizer region of the Xenopus laevis gastrula by making high resolution time-lapse recordings of cultured explants. The dorsal marginal zone, comprising among other tissues prospective notochord and somitic mesoderm, was cut from early gastrulae and cultured in a way that permits high resolution microscopy of the deep mesodermal cells, whose organized int...

متن کامل

Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants.

We make use of a novel system of explant culture and high resolution video-film recording to analyse for the first time the cell behaviour underlying convergent extension and segmentation in the somitic mesoderm of Xenopus. We find that a sequence of activities sweeps through the somitic mesoderm from anterior to posterior during gastrulation and neurulation, beginning with radial cell intercal...

متن کامل

Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis.

We show that notochord-inducing signals are present during Xenopus laevis gastrulation and that they are important for both inducing and organizing cell behavior and differentiation in the notochord. Previous work showed that convergent extension of prospective notochordal and somitic mesoderm occurs by mediolateral cell intercalation to produce a longer, narrower tissue. Mediolateral cell inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 116 4  شماره 

صفحات  -

تاریخ انتشار 1992